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We show that, for an exactly solvable quantum spin model, a discontinuity in the first derivative of the
ground-state concurrence appears in the absence of a quantum phase transition. It is opposed to the popular
belief that the nonanalyticity property of ground-state concurrence can be used to determine quantum phase
transitions. We further point out that the analyticity property of the ground-state concurrence in general can be
more intricate than that of the ground-state energy. Thus there is no one-to-one correspondence between
quantum phase transitions and the nonanalyticity property of the concurrence. Moreover, we show that the von
Neumann entropy, as another measure of entanglement, cannot reveal quantum phase transitions in the present
model. Therefore, in order to link with quantum phase transitions, some other measures of entanglement are
needed.
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Quantum entanglement, as one of the most fascinating
features of quantum theory, has attracted much attention over
the past decade, mostly because its nonlocal connotationf1g
is regarded as a valuable resource in quantum communica-
tion and information processingf2g. Recently a great deal of
effort has been devoted to the understanding of the connec-
tion between quantum entanglement and quantum phase
transitionssQPTsd f3–17g. Quantum phase transitionsf18g
are transitions between qualitatively distinct phases of quan-
tum many-body systems, driven by quantum fluctuations. In
view of the connection between entanglement and quantum
correlationsf19g, one anticipates that entanglement will fur-
nish a dramatic signature of the quantum critical point.
People hope that, by employing quantum entanglement, the
global picture of the quantum many-body systems could be
diagnosed, and one may obtain fresh insight into the quan-
tum many-body problem. Hence, in addition to its intrinsic
relevance with quantum information applications, entangle-
ment may also play an interesting role in the context of sta-
tistical mechanics.

The aforementioned studies are based on the analysis of
particular many-body models. Recently a general framework
of the relation between QPTs and bipartite entanglement was
proposedf20g. They show that a discontinuity in or a diver-
gence of the ground-state concurrencefthe first derivative of
the ground-state concurrenceg can be both necessary and suf-
ficient to signal a first-order QPTs1QPTd fsecond-order QPT
s2QPTdg. This conclusion is only justified under conditions
where artificial and/or accidental occurrences of nonanalyt-
icity in both the entanglement measuresor its derivativesd
and the derivatives of the ground-state energy are excluded.
However, one may wonder if their results can be extended
further for more general Hamiltonians, and if the correspon-
dence between QPTs and bipartite entanglement can still be
valid when the conditions are not satisfied.

In this paper, the entanglement propertiessthe ground-
state concurrence and the von Neumann entropyd are calcu-

lated for an exactly solvable quantum spin modelf21g. Con-
trary to conventional wisdom, we find that there exists a
discontinuity in the first derivative of the concurrence,at
which there is no quantum critical point. In fact, similar
results had already been reported in Ref.f7g for a quantum
spin model on a simplex in a magnetic field. Here we give
general arguments to show why the analyticity property of
the concurrence is more intricate than that of the ground-
state energy. Furthermore, for the one-dimensionalXXZ
model at the critical point of the isotropic ferromagnetic
case, it is found that the first derivative of the concurrence is
discontinuousf6g. However, it is a 1QPT, instead of a 2QPT.
The reason why the nonanalyticity of the ground-state energy
of the XXZ spin chain does not faithfully reflect that of con-
currence is explained. We note that, for our case and those in
Refs. f6,7g, the anomalous nonanalyticities in the concur-
rence all come from the operation of finding maximum value
required by the definition of concurrence, but not originating
from the density operator. Thus these cases seem to indicate
that, for generic models, QPTs can not be distinctly charac-
terized through the analysis of the analyticity properties of
concurrence when some of the conditions mentioned in Ref.
f20g are violated. That is, it is not always possible to infer the
existence of QPTs from concurrence. Moreover, we show
that, for the model considered in this paper, the von Neu-
mann entropy remains constant even crossing the critical
point. That is, the von Neumann entropy cannot always de-
tect QPTs. Therefore, in order to have close connection with
QPTs, some other measures of entanglement are needed.

The exactly solvable quantum spin model considered here
is the isotropic spin-12XY sor spin-12XXd chain with three-spin
interactionsf21g,

H = − o
i=1

N Fsi
xsi+1

x + si
ysi+1

y +
l

2
ssi−1

x si
zsi+1

y − si−1
y si

zsi+1
x dG ,

s1d

whereN is the number of sites,si
a sa=x,y,zd are the Pauli

matrices, andl is a dimensionless parameter characterizing*Electronic address: mfyang@mail.thu.edu.tw
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the three-spin interaction strengthsin unit of the nearest-
neighbor exchange couplingd. The periodic boundary condi-
tion sN+1=s1 is assumed. This model can be solved by using
the Jordan-Wigner transformationf22,23g, and all physical
quantities can in principle be calculated exactly. It is shown
that the three-spin interaction can lead to a 2QPT atlc=1
f21g.

Here we consider the entanglement between two specific
spins in the ground state of a quantum system. The state of
two spinsi and j in the ground state of a quantum system is
described in terms of the two-particle reduced density matrix
ri j obtained by tracing over other spins.

The structure ofri j follows from the symmetry properties
of the Hamiltonian. The Hamiltonian in Eq.s1d is real and it
has the following two symmetries. One is a global
Us1d-rotation symmetry about the spin-z axis, another is aZ2

symmetry of a globalp rotation about the spin-x axis f24g.
These symmetries guarantee thatri j has the formf25g

ri j =1
uij 0 0 0

0 wij zij 0

0 zij wij 0

0 0 0 uij

2 s2d

in the standard basishu↑ ↑ l , u↑ ↓ l , u↓ ↑ l , u↓ ↓ lj. Wang and Za-
nardi f26g have shown that the matrix elements ofri j can be
expressed in terms of the various correlation functions
ksi

as j
bl sa ,b=x,y,zd

uij =
1

4
s1 + ksi

zs j
zld,

wij =
1

4
s1 − ksi

zs j
zld,

zij =
1

4
sksi

xs j
xl + ksi

ys j
yld. s3d

Note thatuij ,wij ù0 because of the inequalityuksi
zs j

zluø1,
which is a special case of the Schwarz inequalityukA†Blu
øÎkA†AlÎkB†Bl for A= I sI is the identity operatord and B
=si

zs j
z.

From ri j , the ground-state concurrencef27g quantifying
the entanglement is readily obtained asf25,26g

Ci,j = 2 maxh0,uzij u − uijj

=
1

2
maxh0,uksi

xs j
xl + ksi

ys j
ylu − ksi

zs j
zl − 1j. s4d

Because the entanglement between a pair of adjacent spins is
expected to be dominant compared with a pair of non-
nearest-neighbor spins, we focus on the nearest-neighbor
case in the following discussions.

Using the method adopted by Lieb, Schultz, and Mattis
f28g, one can calculate the spin-spin correlation functions
exactly f21g,

ksi
xsi+1

x l = ksi
ysi+1

y l = G,

ksi
zsi+1

z l = − G2, s5d

with

G =5
2

p
, l , 1,

2

pl
, l ù 1.6 s6d

We find that, for the nearest-neighbor cases, two correlation
functionsksi

xsi+1
x l and ksi

zsi+1
z l are dependent, and the latter

can be written in terms of the former. Thus the nearest-
neighbor concurrence is only determined by a single corre-
lation functionG. By substituting the results of the correla-
tion functions into Eq.s4d, the exact expression of the
concurrence between a pair of adjacent spins becomes

Ci,i+1 =
1

2
maxh0,sG + 1d2 − 2j. s7d

The dependence ofCi,i+1 on l is plotted in Fig. 1. We see
that, both atl=lc=1 andl=l0=2/sÎ2−1dp<1.5369, the
first derivative of the concurrence]Ci,i+1/]l shows discon-
tinuities, while Ci,i+1 is continuous. The discontinuity in
]Ci,i+1/]l at l=lc=1 do indicate the 2QPT of the present
model, consistent with the proposal in Ref.f20g. However,
an unexpected discontinuity in]Ci,i+1/]l occurs atl=l0,
which is not a critical point. The origin of nonanalyticity in
the concurrence atl=l0 comes from the requirement that
the concurrence should be non-negative, but not from the
nonanalyticity of ri j . Therefore, the discontinuity in
]Ci,i+1/]l needs not always indicate the existence of nonana-
lyticity in the ground state energy and show any QPT.

In a recent work studying the one-dimensional extended
Hubbard modelf15g, the authors show that QPTs can be
identified at places where the von Neumann entropy is extre-
mum or its derivative is singular. The von Neumann en-
tropy, another measure of entanglement, is defined as
S;−trsr jlog2r jd, wherer j is the one-particle reduced density
matrix obtained by tracing over all sites except thej th site,
and thereforer j =trisri jd stri stands for tracing over theith
sited. One may wonder if this measure of entanglement will
still work for the present model. By using Eqs.s2d and s3d

FIG. 1. The ground-state concurrence of the nearest-neighbor
spins Ci,i+1 as a function ofl for the XX chain with three-spin
interactions in Eq.s1d.
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and after tracing over theith site forri j , one obtainsr j =
1
2I,

and the von Neumann entropyS=1 for all l. The von Neu-
mann entropy thus fails to detect the QPT of the present
model. It is because the nonanalyticity in the matrix elements
of ri j cancel each other by taking trace over theith site.
Hence the von Neumann entropy is not always useful to
detect QPT.

We note that the present example will not be the only
exception for the anticipation that the nonanalyticity property
of concurrence can be used to determine QPT. In general, the

concurrence f27g is defined by Cij =maxh0,C̃ijj with

C̃ij ;g1−g2−g3−g4. Here ga are the four eigenvalues,
in descending order, of the matrix Rij

;ÎÎri jssi
y

^ s j
yri j

* si
y

^ s j
ydÎri j with ri j

* being the complex
conjugate of the reduced density matrixri j in the standard

basis. We emphasize that, even for the models such thatC̃ij is
always non-negative andthe matrix elements ofri j change
smoothlyas the physical parameter, sayl, is varied, the con-

currencesin this caseCij =C̃ijd can still show a cusplike sin-
gularity at somel=l0. For example, this will happenscf.
Eq. s7d of Ref. f19gd if at least one of thega takes the form
of uA−Bu swhereA and B denote two functions ofld, and
A−B changes sign atl=l0. Therefore, the concurrence can
be nonanalytic, but it again does not correspond to a QPT.
That is, although the eigenvaluesga are algebraically related

to the matrix elements ofri j , C̃ij may still havedifferent
analyticity properties from ri j . Remembering that

maxh0,C̃ijj= uC̃ij u /2+C̃ij /2, it is clear that the two possibili-
ties of the unexpected discontinuities in]Ci,i+1/]l discussed
above all originate from the nonanalyticity of the absolute-
value function. As mentioned before, an unexpected discon-
tinuity in ]Ci,i+1/]l, which does not indicate a QPT, had
already been reported in Ref.f7g. We believe that the
nonanalyticity in the concurrence in that case may be due to
the reason explained above.

Even though the discontinuity in the first derivative of the
concurrence does indicate a QPT, it may not be 2QPT. An
example is the one-dimensionalXXZ model,

HXXZ= o
i=1

N

fsi
xsi+1

x + si
ysi+1

y + Dsi
zsi+1

z g. s8d

It is shown that, at the critical pointD=−1 scorresponding to
the ferromagnetic Heisenberg modeld, ]Ci,i+1/]D is discon-
tinuous, while Ci,i+1 is continuous andCi,i+1uD=−1=0 f6g.
However, it is a 1QPTssee belowd, instead of 2QPT. The
reason why the nonanalyticity of the concurrence of theXXZ
spin chain does not faithfully correspond to that of the
ground-state energy is explained below.

We first show the relations among the ground state energy
sand its first derivatived, the matrix elements of the reduced
density matrix, and the concurrence for theXXZ spin chain.
The concurrence of theXXZ spin chain has the same expres-
sion as Eq.s4d f5,19,26,29g. Due to the translational invari-
ance, the ground-state energy per site for theXXZ spin chain
can be written asE=ksi

xsi+1
x l+ksi

ysi+1
y l+Dksi

zsi+1
z l. Employ-

ing the Hellmann-Feynman theoremf30g, one has]E /]D

=ksi
zsi+1

z l. Thus, for the nearest-neighbor spins, two matrix
elementsui,i+1 andzi,i+1 of the reduced density matrix can be
written as

ui,i+1 =
1

4
S1 +

]E
]D

D ,

zi,i+1 =
1

4
Se − D

]E
]D

D , s9d

and the nearest-neighbor concurrence becomesCi,i+1

=maxh0,C̃i,i+1j with

C̃i,i+1 = −
1

2
FsE + 1d + s1 − Dd

]E
]D

G . s10d

Here we use the fact thatksi
xsi+1

x l+ksi
ysi+1

y lø0. This in-
equality is satisfied for theXXZ spin chain in Eq.s8d, be-
cause the ground-state wave function obeys the Marshall-
Peierls sign rulef31g.

TheXXZ spin chain is an exactly solvable model, and the
expression ofE can be found in Ref.f32g. For the critical
point D=−1, one hasEuD=−1=−1, ]E /]D→0 asD→−1+ and
]E /]D=1 for D,−1. Thus]E /]D is discontinuous atD=
−1, which is a manifestation of a 1QPT. Based on these

results, we find thatC̃i,i+1 is indeed not continuous atD=
−1, where it has a finite jump from −1 to 0. However, be-

causeCi,i+1=maxh0,C̃i,i+1j , Ci,i+1 becomes continuous and

equal to zero atD=−1. That is, the discontinuity inC̃i,i+1 is
hidden under the operation maxh0,…j. That is the reason
why the nonanalyticity of the concurrence is not faithfully
induced by that of the ground-state energy. In short, the dis-
continuity in the first derivative ofE sand therefore the ma-
trix elements of the reduced density matrixd may not always
lead to discontinuity inCi,i+1. Therefore, a 1QPT may be
misunderstood as a 2QPT through analyzing the nonanalyt-
icity property of concurrence.

There is another critical point of theXXZ spin chain at
D=1 scorresponding to the antiferromagnetic Heisenberg
modeld. It is found thatCi,i+1 and ]Ci,i+1/]D are both con-
tinuous atD=1, and]Ci,i+1/]DuD=1=0 sor Ci,i+1 reaches its
maximum value atD=1d f5,6g. It is interesting to see how
these results can be realized in the present framework. At the
critical point D=1, it is shown in Ref.f32g that E and all of
its derivatives with respect toD are continuous. Therefore,

Ci,i+1 s=C̃i,i+1, becauseC̃i,i+1ù0 in this cased and]Ci,i+1/]D
will not show discontinuity atD=1. Moreover, since

]Ci,i+1

]D
= −

1

2
s1 − Dd

]2E
]D2 , s11d

we find that ]Ci,i+1/]D→0 as D→1. Thus the results in
Refs.f5,6g are reproduced.

In summary, although many examples indicate that QPTs
can be distinctly characterized through the analyticity prop-
erties of concurrence, we stress in this paper that this view-
point is not true in general. Except those cases of 2QPTs
indicated by the discontinuity in]Ci,i+1/]D, it is also pos-
sible thatsid ]Ci,i+1/]D is discontinuous, but there is no QPT
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sRef. f7g and the present cased or sii d ]Ci,i+1/]D is discon-
tinuous, while it is a 1QPT rather than 2QPTsXXZ spin
chain atD=−1 f6gd. We further point out that QPTs can not
always be diagnosed even by using the von Neumann en-
tropy. As far as we know, there are some other measures of
entanglement, say localizable entanglementf10g and global
measure of entanglementf11g. Therefore, while the analytic-
ity properties of concurrence and von Neumann entropy are
not necessarily related to the existence of critical points,
other measures of entanglement may work. Thus more effort

is necessary to clarify the relationship between QPTs and
entanglement.
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