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We show that, for an exactly solvable quantum spin model, a discontinuity in the first derivative of the
ground-state concurrence appears in the absence of a quantum phase transition. It is opposed to the popular
belief that the nonanalyticity property of ground-state concurrence can be used to determine quantum phase
transitions. We further point out that the analyticity property of the ground-state concurrence in general can be
more intricate than that of the ground-state energy. Thus there is no one-to-one correspondence between
guantum phase transitions and the nonanalyticity property of the concurrence. Moreover, we show that the von
Neumann entropy, as another measure of entanglement, cannot reveal quantum phase transitions in the present
model. Therefore, in order to link with quantum phase transitions, some other measures of entanglement are
needed.

DOI: 10.1103/PhysRevA.71.030302 PACS nuntber03.67.Mn, 03.65.Ud, 73.43.Nq, 05.70.Jk

Quantum entanglement, as one of the most fascinatingated for an exactly solvable quantum spin moddl]. Con-
features of quantum theory, has attracted much attention overary to conventional wisdom, we find that there exists a
the past decade, mostly because its nonlocal connotglion discontinuity in the first derivative of the concurrenc,
is regarded as a valuable resource in quantum communicghich there is no quantum critical pointn fact, similar
tion and information processiri@]. Recently a great deal of results had already been reported in H&l.for a quantum
e_ffort has been devoted to the understanding of the connegpin model on a simplex in a magnetic field. Here we give
tion between gquantum entanglement and quantum phasfaneral arguments to show why the analyticity property of
transitions (QPT9 [3-17. Quantum phase transitioid8]  the concurrence is more intricate than that of the ground-
are transitions between qualitatively distinct phases of quansiie energy. Furthermore, for the one-dimensioXxZ
tum many-body systems, driven by quantum fluctuations. INyode| at the critical point of the isotropic ferromagnetic
view of the connection between entanglement and quantumase it is found that the first derivative of the concurrence is
chreIatlons[lg]_, one anticipates that entangleme_r_]t will fL_Jr- discontinuoug6]. However, it is a 1QPT, instead of a 2QPT.
nish a dramatic signature of the quantum critical point.the reason why the nonanalyticity of the ground-state energy
People hope that, by employing quantum entanglement, thgs the xxz spin chain does not faithfully reflect that of con-
global picture of the quantum many-body systems could beyrrence is explained. We note that, for our case and those in
diagnosed, and one may obtain fresh insight into the quargefs [6,7], the anomalous nonanalyticities in the concur-
tum many-body problem. Hence, in addition to its intrinsic \once all come from the operation of finding maximum value
relevance with quantum information applications, entanglereqyired by the definition of concurrence, but not originating
ment may also play an interesting role in the context of stagrom the density operator. Thus these cases seem to indicate

tistical mechanics. that, for generic models, QPTs can not be distinctly charac-

The aforementioned studies are based on the analysis @fized through the analysis of the analyticity properties of
particular many-body models. Recently a general framework,ncyrrence when some of the conditions mentioned in Ref.

of the relation between QPTs and bipartite entanglement wa$ are violated. That is, it is not always possible to infer the

proposed 20]. They show that a discontinuity in or a diver- gyistence of QPTs from concurrence. Moreover, we show
gence of the ground-state concurrehite first derivative of that, for the model considered in this paper, the von Neu-
the ground-state concurrerjagan be both necessary and suf- mann entropy remains constant even crossing the critical
ficient to signal a first-order QPILQPT) [second-order QPT  hoint That is, the von Neumann entropy cannot always de-
(2QPT]. This conclusion is only justified under conditions tect QPTs. Therefore, in order to have close connection with
where artificial and/or accidental occurrences of nonanalthp-l—S some other measures of entanglement are needed.

icity in both the entanglement measuier its derivatives The exactly solvable quantum spin model considered here

and the derivatives of the gr.ound.—state energy are exclude the isotropic spin}XY (or spin-lxx) chain with three-spin
However, one may wonder if their results can be extende teractiong 21] 2

further for more general Hamiltonians, and if the correspon-

dence between QPTs and bipartite entanglement can still be N N
valid when the conditions are not satisfied. H=->, [Uixoﬁ“ Yo,y + (0 0%0Yy — 0V g070% ) |,
In this paper, the entanglement propertigise ground- i=1 2
state concurrence and the von Neumann enjrapy calcu- 1)
whereN is the number of sitesr* (a=X,y,2) are the Pauli
*Electronic address: mfyang@mail.thu.edu.tw matrices, and\ is a dimensionless parameter characterizing

1050-2947/2005/78)/0303024)/$23.00 030302-1 ©2005 The American Physical Society



RAPID COMMUNICATIONS

MIN-FONG YANG PHYSICAL REVIEW A 71, 03030ZR) (2005
the three-spin interaction strengtn unit of the nearest- 0.5 y - -

neighbor exchange couplipngrhe periodic boundary condi-

tion o1 =07 is assumed. This model can be solved by using 04 .

the Jordan-Wigner transformatid22,23, and all physical
quantities can in principle be calculated exactly. It is shown
that the three-spin interaction can lead to a 2QPRatl
[21].

Here we consider the entanglement between two specific
spins in the ground state of a quantum system. The state of
two spinsi andj in the ground state of a quantum system is

described in terms of the two-particle reduced density matrix 0.0 0.5 1.0 15 2.0
pij obtained by tracing over other spins. A
The structure opy;; follows from the symmetry properties
of the Hamiltonian. The Hamiltonian in E¢L) is real and it FIG. 1. The ground-state concurrence of the nearest-neighbor

has the following two symmetries. One is a globalSpinsCijs; as a function ofn for the XX chain with three-spin
U(1)-rotation symmetry about the spiraxis, another is @,  interactions in Eq(1).
symmetry of a globakr rotation about the spir-axis [24].

These symmetries guarantee tpathas the forn{25] (dPo?) = - G2, (5)
0w oz 0 2
= 2 —
Pij 0 2 W, 0 (2) ) - <1,
0o 0 0 |y G=1, )
. —, A=1.
in the standard bas{$! 1),|71),[1 7)./ |)}. Wang and Za- 70N

nardi[26] have shown that the matrix elementsggfcan be
expressed in terms of the various correlation function

(ofof) (@, B=x,y,2)

We find that, for the nearest-neighbor cases, two correlation
Junctions(c’a%,,) and(c?d?,,) are dependent, and the latter
can be written in terms of the former. Thus the nearest-
1 neighbor concurrence is only determined by a single corre-
U = 4_1(1 +<UiZUjZ>). lation functionG. By substituting the results of the correla-
tion functions into Eq.(4), the exact expression of the
concurrence between a pair of adjacent spins becomes
Wy = (1~ (o) 1
e Ciiva=5max0,(G+1)-2}. (7)

The dependence df;;,; on \ is plotted in Fig. 1. We see
that, both atn=\.=1 and\=\y=2/(v2-1)7=~1.5369, the

_ _ first derivative of the concurrenc#C; ;.,/J\ shows discon-
Note thatu;,w;; =0 because of the inequalityoio)| <1,  (inyities, while Ci;+1 is continuous. The discontinuity in
which is a special case of the Schwarz inequaliB)|  4C,,,/o\ at A=\.=1 do indicate the 2QPT of the present
< (ATA)\(B'B) for A=1 (I is the identity operatgrandB  model, consistent with the proposal in RE20]. However,

1
2=, (70 + (o). 3

=ojo]. an unexpected discontinuity ie1C; ;,1/JN occurs ath =\,
From p;;, the ground-state concurrenf27] quantifying  which isnota critical point. The origin of nonanalyticity in
the entanglement is readily obtained[25,26] the concurrence at=\, comes from the requirement that
the concurrence should be non-negative, but not from the
Cij =2 max0,|z| - u;} nonanalyticity of p;. Therefore, the discontinuity in

1 dCi i+1/ I\ needs not always indicate the existence of nonana-
= Ema><{0,|<0)i(0)j(> +(ofof)|=(afof)=1}.  (4)  Iyticity in the ground state energy and show any QPT.
In a recent work studying the one-dimensional extended
Because the entanglement between a pair of adjacent spinstiibbard model[15], the authors show that QPTs can be
expected to be dominant compared with a pair of nondidentified at places where the von Neumann entropy is extre-
nearest-neighbor spins, we focus on the nearest-neighboium or its derivative is singular. The von Neumann en-
case in the following discussions. tropy, another measure of entanglement, is defined as
Using the method adopted by Lieb, Schultz, and MattisS= —tr(p;log,p;), wherep; is the one-particle reduced density
[28], one can calculate the spin-spin correlation functiongmatrix obtained by tracing over all sites except fitfe site,
exactly[21], and thereforep;=tri(p;;) (tr; stands for tracing over thih
site). One may wonder if this measure of entanglement will
(ofolep) =(0fali) =G, still work for the present model. By using Eq2) and (3)
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and after tracing over thigh site for p;;, one obtainspj:%I, =(dto?,.,). Thus, for the nearest-neighbor spins, two matrix
and the von Neumann entrof8# 1 for all . The von Neu- elementsy; ;,; andz ;. of the reduced density matrix can be
mann entropy thus fails to detect the QPT of the presenivritten as

model. It is because the nonanalyticity in the matrix elements

of p; cancel each other by taking trace over ftie site. 1<1+‘9_‘€>1

Uiji+1 = 4

Hence the von Neumann entropy is not always useful to dA
detect QPT.
We note that the present example will not be the only 1 9E
exception for the anticipation that the nonanalyticity property Ziji+1= 4 €~ Aa ) 9)

of concurrence can be used to determine QPT. In general, the
concurrence [27] is defined by C;=max0,C;} with and the nearest-neighbor concurrence beconigs

Cij=71-7—7vs—Ya Here y, are the four eigenvalues, =max0,C; .1} with

in __descending _ order, of the  matrix R; _ 1 9E

= \pij(o¥® o¥pjo? ® o) \p;j with pj; being the complex Ciisn=-— 5[(5+ H+@1 _A)ﬂ] : (10
conjugate of the reduced density matyix in the standard

basis. We emphasize that, even for the models suctCihist ~ Here we use the fact thdjor, ) +(ojot,))<0. This in-
always non-negative antthe matrix elements qf; change equality is satisfied for theXXZ spin chain in Eq.(8), be-
smoothlyas the physical parameter, sayis varied, the con- cause the ground-state wave function obeys the Marshall-
currence(in this caseC;;=C;;) can still show a cusplike sin- Peierls sign rul¢31].

gularity at some\=X\,. For example, this will happefct. The XXZspin chain is an exactly solvable model, and the
Eq. (7) of Ref.[19]) if at least one of they, takes the form  €XPression off can be found in Ref[32]. For the critical

of |A-B]| (whereA and B denote two functions ok), and ~ POINtA=-1, one hagl,-,=-1, J€/JA—0 asA—-1" and
A-B changes sign at=\,. Therefore, the concurrence can 9¢/9A=1 for A<-1. Thusdc/JA is discontinuous an =

be nonanalytic, but it again does not correspond to a QPT;1, Which is a manifestation of a 1QPT. Based on these
That is, although the eigenvalugs are algebraically related results, we find thaC;,, is indeed not continuous at=

to the matrix elements op;;, C; may still havedifferent -1, where it has a finite jump from -1 to 0. However, be-
analyticity ~properties from p;. Remembering that causeC;;.;=max0,C;.1}, Cij+1 becomes continuous and
max{O,Cij}:|Cij|/2+Cij/2, it is clear that the two possibili- equal to zero at=-1. That is, the discontinuity i; ,; is
ties of the unexpected discontinuitiesd®; ;.,/J\ discussed hidden under the operation n{@x...}. That is the reason
above all originate from the nonanalyticity of the absolute-why the nonanalyticity of the concurrence is not faithfully
value function. As mentioned before, an unexpected disconinduced by that of the ground-state energy. In short, the dis-
tinuity in JC;;.1/d\, which does not indicate a QPT, had continuity in the first derivative of (and therefore the ma-
already been reported in Ref7]. We believe that the trix elements of the reduced density matriray not always
nonanalyticity in the concurrence in that case may be due teead to discontinuity inC;;,;. Therefore, a 1QPT may be
the reason explained above. misunderstood as a 2QPT through analyzing the nonanalyt-
Even though the discontinuity in the first derivative of the icity property of concurrence.
concurrence does indicate a QPT, it may not be 2QPT. An There is another critical point of th¥XZ spin chain at
example is the one-dimensiondXZ model, A=1 (corresponding to the antiferromagnetic Heisenberg
mode). It is found thatC;;,; and dC;;,,/dA are both con-

N . yy ., tinuous atA=1, anddC; ;,1/dA[,=1=0 (or C;;,; reaches its
Hxxz= 2 [ofolsq + ol oy + Adfof,]. (8)  maximum value at\=1) [5,6]. It is interesting to see how
=1 these results can be realized in the present framework. At the

critical pointA=1, it is shown in Ref[32] that£ and all of

Itis shown that, at the critical point =1 (corresponding to its derivatives with respect td are continuous. Therefore,

the ferromagnetic Heisenberg mogeiC; ;.,/JA is discon- ~ ~ T
tinuous, while C;;,; is continuous andC;i,y|a--,=0 [6].  Cii+1 (5Cijs1, beCAUSE; ;11 =0 in this casgand dC; 4,/ IA
However, it is a 1QPTsee below, instead of 2QPT. The Will not show discontinuity a=1. Moreover, since
reason why the nonanalyticity of the concurrence ofXix&Z 9C. - 1 PE
spin chain does not faithfully correspond to that of the J:——(l—A)—z,
ground-state energy is explained below. JA 2 JA

We first show the relations among the ground state energye find thatJC;;.;/dA—0 as A—1. Thus the results in
(and its first derivativg the matrix elements of the reduced Refs.[5,6] are réproduced.
density matrix, and the concurrence for tk¥Z spin chain. In summary, although many examples indicate that QPTs
The concurrence of th&XZ spin chain has the same expres- can be distinctly characterized through the analyticity prop-
sion as Eq(4) [5,19,26,29. Due to the translational invari- erties of concurrence, we stress in this paper that this view-
ance, the ground-state energy per site forX& spin chain  point is not true in general. Except those cases of 2QPTs
can be written ag=(ojof, ) +(aa},) +A(ofot,;). Employ- indicated by the discontinuity i@C;,1/dA, it is also pos-
ing the Hellmann-Feynman theorefB0], one hasdS/dA  sible that(i) 4C;;.1/JA is discontinuous, but there is no QPT

(11
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(Ref. [7] and the present caser (ii) JC;;.1/dA is discon- is necessary to clarify the relationship between QPTs and
tinuous, while it is a 1QPT rather than 2QRXXZ spin  entanglement.

chain atA=-1[6]). We further point out that QPTs can not

always be diagnosed even by using the von Neumann en- The author is grateful to M.-C. Chang for showing him
tropy. As far as we know, there are some other measures &fis manuscript prior to publication and for many valuable
entanglement, say localizable entanglemdff and global discussions. | would also like to thank S.-J. Gu, D. Lidar, F.
measure of entanglemelitl]. Therefore, while the analytic- Verstraete, and J. Vidal for their helpful comments on the
ity properties of concurrence and von Neumann entropy arenanuscript. This work was supported by the National Sci-
not necessarily related to the existence of critical pointsence Council of Taiwan under Contract No. NSC 92-2112-
other measures of entanglement may work. Thus more effol1-029-006.
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